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Abstract 
Storage rot is a major cause of yield loss in apple production. The infection of lenticels with 
Gloeosporium spp. takes place in the orchard. At this stage, there are no visible symptoms. 
During storage, when the fruit continues to ripen, symptoms appear as brown spots. The 
aim of this study was to examine whether an early detection of an infection with 
Gloeosporium spp. is possible using hyperspectral image analysis. Using this technology, 
infected apples could be sorted out before storage, reducing the risk of infecting further 
apples during storage, as well as costs and energy consumption due to the timely removal 
of infected apples before the storage cycle. Images of apples of the variety Pinova were 
taken at the beginning and at the end of the storage period in a controlled laboratory setup. 
The second measurement was used to develop a classification of late symptoms. 
Subsequently, areas on the initial measurement, where symptoms will manifest, were 
annotated for the purpose of early detection via artificial intelligence based algorithms. First 
results are presented and upcoming challenges regarding the detection and classification 
are discussed. 
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Introduction 
The infection of apples with Gloeosporium spp. takes place in the orchard, when conidia are 
washed into lenticels (Edney, 1974). As there are no visible symptoms on the apple when 
put into storage after harvest, current detection of storage rot is based on manual inspection 
at a late state of storage when symptoms are visible to the bare eye. This method requires 
experienced personnel, is time consuming and subjective. In contrast to a visual inspection, 
hyperspectral image classification of late symptoms is a time-saving and objective approach 
and has been shown to be an effective means of detecting plant pathogen infection before 
visible symptoms appear (Thomas et al., 2018). An early detection of storage rot before the 
storage would further enable savings in storage capacity. 
Within this study the potential of hyperspectral image classification through machine learning 
methods for the early detection of storage rot disease was investigated through precision 
measurements at laboratory scale of apple before and after storage.  

Material and Methods 
Apples of the variety Pinova were used in this study. Hyperspectral images were acquired 
at the beginning and at the end of the storage period, using a hyperspectral camera (micro 
HSI 410 SHARK, Corning Inc., New York, USA) under laboratory conditions. The 
experimental setup consists of the camera and a lighting system which includes four quartz-
wolfram-halogen lamps (Malvern Panalytical Ltd., Malvern, UK) with 70 W and 15 V. The 
camera operates as a pushbroom system, therefore camera and lighting system are 
integrated to a linear axle, so these two components can move over the sample placed 
beneath. The sensor setup is connected to a laptop for sensor operation and data 
acquisition. Two series of measurements with 80 apples were obtained. Before the first 
measurement, each apple was provided with adhesive markers on the upper and lower side 
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to identify the identical locations on both measuring dates. After the first measurement, each 
apple was individually packed in a fruit net with numbering and stored in cold storage until 
the second measurement. Data were evaluated with the software fluxtrainer (LuxFlux 
GmbH, Reutlingen, Germany), where different artificial intelligence-based algorithms can be 
combined for processing the data. 
The first step for analyzing the data was to perform a smoothing of the data (Savitzky-Golay-
Smoothing) and a background masking through thresholding which is used to exclude 
background spectra so only relevant spectra are used for further processing. Then, k-means 
clustering was applied. An unsupervised approach which searches for clusters within the 
data was chosen to get an overview of the data. For classification of late symptoms, a 
cropped image which contains six apples was used for data annotation. As a next step, 
different supervised classification algorithms were tested for their performance, whereas a 
distance based classifier using the mahalanobis distance method has verified as favored 
method. 
For early detection, images of the first and second measurement were placed on top of each 
other so the areas where symptoms will manifest could be annotated in the initial images. 
Then, the spectral signatures of lenticels which are located within the annotated area were 
compared. 
 
Results 
At the time of the first measurement, none of the apples showed symptoms. At the point of 
the second measurement 44 out of 160 apples developed storage rot symptoms. The 
performance of the distance classifier was tested by using the remaining apples with 
classification parameters based on the annotated training data. In figure 1, on the right side, 
the classification result of late symptoms can be seen represented via a false color image. 
The color code of groups is as follows: green – healthy tissue, brown – symptomatic tissue, 
olive green – lignified tissue, yellow – label. For comparison, there is the pseudo-RGB image 
on the left side of the figure. With this classification method all symptomatic apples could be 
detected. However, 8 healthy apples out of 160 were denoted as symptomatic, which results 
in an overall accuracy of 95% for the classification “healthy“ or “symptomatic“ apples. It is 
notable that even if the respective apple is assigned to the correct group “healthy” or 
“symptomatic” not all pixels have been assigned correctly, as can be seen in apple number 
1 on the stem and in apples number 3 and 6 around the symptom (Fig. 1). 
In figure 2, the annotated areas in the first measurement can be seen on the right side. The 
orange colored circle is the area, where the symptom is located later. Every lenticel located 
within this area was annotated to an own group. The lenticels are marked by the blue circles. 
The red marked lenticel which in the center of the symptomatic area is suspected to have 
been infected and from which the symptom has spread. The spectral signatures of the 
individual lenticels are shown in figure 2, on the left side. It can be observed that, the higher 
the lenticel is placed on the apple, the higher the reflectance level is. 
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Figure 1: Hyperspectral images of apples after storage. Pseudo-RGB (left) and false color 
representation of the classification result (right). Green – healthy tissue; brown – symptomatic tissue; 
olive green – lignified tissue; yellow – label.  

 

 
Figure 2: Pre-storage image of an apple that has been confirmed to show storage rot symptoms in 
the post-storage measurement. Spectral signatures of lenticels within symptomatic area (left) and 
false color representation of the apple showing the annotated areas of the respective lenticel spectral 
signatures (right).  

 
Discussion 
The architecture of the apple fruit causes suboptimal conditions for spectral analysis. Since 
it is a spherical object, there are differences in exposure intensity and light reflection 
properties. The planes which are located closer to the light source are more illuminated than 
those further below. In addition, the angle at which the light hits the surface influences the 
obtained reflectance (Shahrimie et al., 2016). Also, the skin color of the apples is not uniform 
and the distinction between the colors cannot be made clearly due to the color gradient. 
These circumstances cause a high variance of the data. Despite the given variance of the 
data, the symptomatic tissue of late stage symptoms can be well distinguished from healthy 
and lignified tissue. However, when it comes to transition areas between the different tissue 
types, the classification algorithm is not able to perform perfectly. This complication is 
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caused by so called mixed pixels. The trade-off between spectral and spatial resolution 
results in pixels that contain spectral data from more than one area (Keshava & Mustard, 
2002). Therefore, they cannot be clearly assigned to a respective group. 
For early detection the spectral signatures of lenticels were investigated in the area, where 
a symptom has been shown to manifest in the post-storage measurement. As can be seen 
in the spectral signatures of the lenticels (Fig. 2), there are different reflectance levels of the 
individual lenticels. These differences in reflectance are caused by the position of the 
lenticels on the apple (Shahrimie et al., 2016). As explained before, the illumination depends 
on the distance and the inclination of the spot to the light source and to the camera. The red 
annotated lenticel, which is placed in the center of the symptomatic area also has a medium 
reflectance level compared to the remaining lenticels. Apart from the differences in the 
reflectance level, no clear differences in the spectral characteristics of the infected lenticels 
could be recognized in this study.  
One reason, why no changes could be detected may be that mixed pixels play a role. The 
size of lenticels is around 2-3 mm, which does often lead to pixels with partial coverage of 
the lenticel and surrounding tissue. Additionally, when zooming into the image it becomes 
blurred and therefore challenging to annotate only the lenticel without possibly marking 
surrounding tissue as well. 
The infection with Gloeosporium spp. leads to changes of the physiological properties of the 
apple fruit which can be clearly seen in spectral signatures of late stage symptoms. The 
changes of enzyme content which are given at the beginning of the infection could not be 
detected in these images (Schulz, 1978). Early detection would be desirable for agricultural 
applications to save energy costs and storage capacity, but automatic detection of late 
symptoms is a step forward to save time and manpower by eliminating the need for manual 
sorting and providing an objective damage assessment. 
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