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Photo-optical, non-invasive detection of the fire blight pathogen              
E. amylovora 

A. Hummrich1* and R.T. Voegele1 

 

Abstract 

Erwinia amylovora, the causal agent of fire blight, causes enormous losses in pome fruit 
production, especially in apples and pears. The limited options for disease control make 
early detection of fire blight infections important in order to start specific and efficient 
counter measures in due time. Spectroscopic methods take advantage of non-
invasiveness and speed of measurements. Measurements are repeatable, and a quick 
survey of large areas and remote sensing is possible. The method uses reflectance 
characteristics of plant tissue, which provides information about the health status of the 
plant. In this project, a fluorescence spectrometer was used to perform ratings on 
inoculated and healthy trees of different apple cultivars. First results indicate the possibility 
of differentiation between healthy and infected trees due to spectrometric data. 
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Introduction 

Fire blight is a major threat for pome fruit production, causing economical losses worldwide 
especially in apples and pears (Bonn and Van der Zwet 2000). Specific symptoms are the 
emergence of polysaccharide containing exudates, the burnt appearance of leaves and 
flowers, and the typical shepherd‘s crook, a bending of the shoot apex due to decreasing 
turgor pressure. Once the disease has occurred, there are very few countermeasures like 
the excision of diseased tissues or the removal of infected trees, even whole orchards. 
Besides these curative measures stands the protective use of antibiotics e.g. streptomycin 
or biological control using antagonists (Kunz et al. 2011). An early detection of fire blight 
infections, amongst other parameters, may be helpful for decision making in order to start 
specific and efficient countermeasures in due time. The advantages of spectroscopic 
methods are obvious: the measurements are non-invasive and therefore repeatable; a 
quick survey of large areas and remote sensing is possible. The method uses the 
reflectance characteristics of plant tissue, which provides information about the health 
status of the plant. Changes in plant reflectance spectra can be used to make statements 
about the presence of pathogens. In 1996, Luedeker et al. could use chlorophyll 
fluorescence to identify powdery mildew on apple leaves earlier than a visual rating. 
Experiments on scab-infected and healthy apple trees were successful putting into 
practice an infrared spectroscopy-based differentiation (Delalieux et al. 2007). In addition, 
attempts were undertaken using near infrared spectroscopy to detect fire blight in 
asymptomatic pear plants (Spinelli et al. 2006). 
 
 
Material and methods 

Apple plants from six different susceptible cultivars were used: Adams Parmäne, Danziger 
Kantapfel, Gala, Öhringer Blutstreifling, Rewena, and Schneiderapfel. 
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 For each cultivar, twelve apple shoots were used. One half of the shoots were artificially 
inoculated with a bacterial suspension of E. amylovora strain Ea385. Inoculation was 
performed by injection with a needle and syringe just beneath the youngest fully developed 
leaf. The other half was left untreated as control. The experiment was conducted in the 
greenhouse, with 12 h light and 27°C/15°C day/night temperature. Measurements were 
taken immediately before inoculation as well as 1, 2, 4, 7, 11, 16, 22 and 29 dpi. Leaves at 
five different positions on the shoot were measured three times at each point; additionally 
photographs were taken to document symptom development. The sensor used was the 
fluorescence spectrometer Multiplex® (Force A, Orsay, France). As an active sensor it is 
independent from ambient light because of its internal light source, allowing 
measurements regardless from external light conditions. The sensor registers twelve 
signals resulting from four excitations (UV, blue, green and red light) and three emissions 
(blue, red and far-red). Out of this signals several ratios are calculated, which give 
information about different plant constituents/components (Multiplex® User‘s guide 2008). 
The main two categories are fluorescence excitation ratios of far-red chlorophyll emission 
(FRF) and fluorescence emission ratios (e.g. FRF/RF and BGF/FRF). 

 
Results 

Data were tested for normality of distribution to decide which classification method should 
be used. Testing was done using the Shapiro-Wilk test in R (R Development Core Team 
2011) for each of the datasets (324 sets for each cultivar: two treatments – inoculated and 
control, nine dates - 0 to 29 dpi, and 18 variables tested individually). Out of these 
datasets, only 21% (Adams Parmäne, Fig. 1) respectively 25% (Rewena, Fig. 3) were 
normally distributed with a p-value greater than 0,05 in Shapiro-Wilk test. The four other 
cultivars showed similar results (data not shown). Since most of the data were not 
normally distributed, a tree based modeling was done to decide, which of the variables 
were most useful in differentiating between healthy and infected plants. Decision trees 
consist of nodes, connected by branches and ending in leaf nodes. At each decision node 
the measured attributes are tested, resulting in a branch that leads either to another node 
or to a terminating leaf node (Larose 2005). From these trees it is possible to generate 
decision rules to decide between healthy and infected populations based upon new 
measurements. The technique used in this work could accurately classify the measured 
attributes based on recursive partitioning (Breiman et al. 1984). The decision trees were 
created using ―rpart‖ in R (R Development Core Team 2011).  
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Fig. 1: Histograms representing a non normal (a) and a normal distribution (b) of the variables 
BRR_FRF (p-value=8,355E-7) and NBI_R (p-value=0,1119) on infected Adams Parmäne plants at 
4 dpi. BRR_FRF: Blue-to-Red Fluorescence Ratio under UV excitation; NBI_R: Nitrogen Balance 
Index, red and UV excitation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Decision trees derived from measurements on healthy and infected Adams Parmäne plants. 
a: 1 dpi, b: 7 dpi, c: 16 dpi, d: 29 dpi; i: infected leaves, h: healthy leaves; 1: RF_UV>=120.4; 2: 
RF_UV< 120.4; 3: BGF_UV< 155.9; 4: BGF_UV>=155.9; 5: BGF_UV>=159.15; 6: BGF_UV< 
159.15; 7: NBI_G>=2.7775; 8: NBI_G< 2.7775; 9: BGF_UV>=165.05; 11: BGF_UV< 167.75; 12: 
BGF_UV>=167.75; 10: BGF_UV< 165.05; 13: NBI_G< 4.229; 14: NBI_G>=4.229; 15: RF_UV< 
51.55; 16: RF_UV>=51.55; 17: BGF_UV>=157.75; 19: BGF_G>=412.5; 20: BGF_G< 412.5; 18: 
BGF_UV< 157.75. Abbreviations for the attributes are explained in the Multiplex® User‘s guide 
(2008). 
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Fig. 3: Histograms representing a non normal (a) and a normal distribution (b) of the variables 
BRR_FRF (p-value=1,99E-4) and NBI_R (p-value=0,1269) on infected Rewena plants at 4 dpi. 
BRR_FRF: Blue-to-Red Fluorescence Ratio under UV excitation; NBI_R: Nitrogen Balance Index, 
red and UV excitation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Decision trees derived from measurements on healthy and infected Rewena plants. a: 1 dpi, 
b: 7 dpi, c: 16 dpi, d: 29 dpi; i: infected leaves, h: healthy leaves; 1: BGF_G>=383.65; 2: BGF_G< 
383.65 51; 3: RF_R< 448.3; 4: RF_R>=448.3; 5: NBI_G< 4.145; 6: NBI_G>=4.145; 7: SFR_G< 
6.1815; 8: SFR_G>=6.1815; 9: SFR_R>=4.4185; 10: SFR_R< 4.4185; 11: BGF_UV>=159.55; 12: 
BGF_UV< 159.55; 13: NBI_R< 1.0555; 14: NBI_R>=1.0555; 15: SFR_R>=4.9815; 16: SFR_R< 
4.9815; 17: BGF_UV>=169.15; 18: BGF_UV< 169.15; 19: FRF_G< 808.2; 20: FRF_G>=808.2; 21: 
RF_UV>=210; 22: RF_UV< 210; 23: BGF_UV>=164.05; 24: BGF_UV< 164.05; 25 
FRF_UV>=488.3; 26: FRF_UV< 488.3; 27: RF_UV< 150.7; 28: RF_UV>=150.7; 29: 
BGF_UV>=161.45; 30: BGF_UV< 161.45; 31: SFR_G< 8.744; 32: SFR_G>=8.744; 33: BGF_G< 
405.2; 34: BGF_G>=405.2. Abbreviations for the attributes are explained in the Multiplex® User‘s 
guide (2008). 
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Decision trees were used to derive a set of conditions that permit accurate classification of 
infected and healthy trees based on the measured attributes. Fig. 2 and 4 show the results 
from the measurements at 1, 7, 16 and 29 dpi. At 7 dpi all Adams Parmäne trees showed 
visible symptoms, Rewena trees at 16 dpi. Taking Fig. 2d as example, the tree can be 
interpreted as follows: if the value of NBI_R is smaller than 0,26765 one would take the left 
branch and the corresponding measurements would be classified as infected. In more 
complex trees (Fig. 2a, b and c) one has to decide on more nodes which direction to take 
until the leaf node is reached. While at 1 dpi – regarding the measurements on Adams 
Parmäne - many nodes are needed to separate the populations, the number of nodes gets 
smaller until at 29 dpi only one attribute is needed to completely separate infected from 
healthy plants. With the less susceptible cultivar Rewena, the number of nodes at 1 and 7 
dpi (Fig. 4a and b) is comparable to the ones of Adams Parmäne but at 16 and 29 dpi (Fig. 
4c and d) the decision trees don‘t enable a proper differentiation like the ones derived from 
the susceptible cultivar. Similar results were obtained from the other cultivars: The 
classification of susceptible cultivars is more distinct than of less susceptible cultivars. 
Additionally, error rates of the classification accuracy for each tree were obtained in 
calculating the prediction column and confusion matrix. The corresponding error rates in 
table 1 indicate a better distinction for infected and healthy Adams Parmäne plants 
regarding further developed infections, too. Error rates are higher at the beginning and 
decrease with progression of infection; the distinction between healthy and infected 
populations gets clearer. The error rates for Rewena don‘t show this decline up to 29 dpi. 

 

Table 1: Error rates of the classification accuracy. 

dpi 1 2 4 7 11 16 22 29 

error rate [%] 
Adams P. 15,97 13,89 9,14 12,78 7,22 5,00 4,39 0 

Rewena 12,5 8,33 10,93 14,44 8,33 12,22 3,95 6,78 

 

Discussion 

This experiment gives insight into the potential of fluorescence spectroscopy to 
differentiate between fire blight infected and healthy apple trees. Even though a secure 
classification is only possible after visible symptoms are present, the photo-optical 
detection of fire blight infections could be useful in reducing the effort of manual ratings of 
orchards. Results suggest that decision trees are able to distinguish apple plants infected 
with fire blight from healthy plants of the susceptible cultivar Adams Parmäne. These 
results are of considerable interest for pome fruit production, where an early detection 
based on photo-optical input could lead to earlier and better counter measures and thus to 
secure and increased production. For the less susceptible cultivar Rewena this distinction 
is not that well-defined. Other statistical methods should be taken into account. In further 
studies, other parameters like secondary plant metabolites such as flavonoids that might 
be generating the changes in reflectance characteristics of infected plant tissue and the 
quantitative detection of E. amylovora using Real Time PCR could be combined with the 
results of spectroscopic measurements. Furthermore, the effect of other biotic stresses for 
apple plants like scab or powdery mildew on the reflectance characteristics should be 
investigated. 
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